
COMP 110/L Lecture 11

Maryam Jalali

Some slides adapted from Dr. Kyle Dewey



Outline

• @Test vs. assertEquals

• Boolean operations

•&&

•||

•!

• Complex if conditions



@Test vs.
assertEquals



@Test vs.
assertEquals

• @Test defines a test

• assertEquals checks a condition

• Can have a @Test containing no assertEquals

• Test always passes

• Can have multiple assertEquals per @Test

• Test passes if all assertEquals are ok



Example:    
MultiAssert.java  

MultiAssertTest.java



Boolean Operations



Boolean Operations
You’re already familiar with  

operations returning boolean



Boolean Operations
You’re already familiar with  

operations returning boolean

3 < 6



Boolean Operations
You’re already familiar with  

operations returning boolean

3 < 6

2 == 7



Boolean Operations
You’re already familiar with  

operations returning boolean

3 < 6

2 == 7

8 >= 8



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5

true



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5

true

1 > 3 && 1 < 5



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5

true

1 > 3 && 1 < 5

false



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5

true

1 > 3 && 1 < 5

false

3 > 1 && 5 < 1



Bigger Expressions
Can chain boolean expressions with AND (&&).

Semantics: only true if both sides are true.

3 > 1 && 1 < 5

true

1 > 3 && 1 < 5

false

3 > 1 && 5 < 1
false



Truth Table

condition 1
(e.g., X)

condition 2
(e.g., Y)

X AND Y
( X && Y ) 

false false false 

false true false 

true false false 

true true true 

Truth tables show the result of combining any two 
boolean expressions using the AND operator and the OR
operator (or the NOT operator).
You should memorize/learn these values.



Example:
And.java



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1
true



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1
true

2 < 1 || 8 < 9



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1
true

2 < 1 || 8 < 9
true



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1
true

2 < 1 || 8 < 9
true

2 < 1 || 9 < 8



Boolean Or
boolean expressions can also be combined with OR (||)  

Semantics: true if either side is true.

3 > 1 || 5 < 1
true

2 < 1 || 8 < 9
true

2 < 1 || 9 < 8
false



Truth Table

condition 1
(e.g., X)

condition 2
(e.g., Y)

X OR Y
( X || Y )

false false false

false true true

true false true

true true true

Truth tables show the result of combining any two 
boolean expressions using the AND operator and the 
OR operator (or the NOT operator).
You should memorize/learn these values.



Example:
Or.java



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)
false



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)
false

!(1 > 7)



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)
false

!(1 > 7)

true



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)
false

!(1 > 7)

true

!(1 < 2 && 1 > 3)



Boolean Not
Can negate a boolean expression with not (!).

Semantics: !true == false and !false == true.

!(1 < 2)
false

!(1 > 7)

true

!(1 < 2 && 1 > 3)
true



Truth Table

condition 1
(e.g., X)

NOT X
( !X )

false true 

true false 

Truth tables show the result of combining any two 
boolean expressions using the AND operator and the OR
operator (or the NOT operator).
You should memorize/learn these values.



Example:
Not.java



Truth Table

condition 1
(e.g., X)

condition 2
(e.g., Y)

NOT X
( !X )

X AND Y
( X && Y ) 

X OR Y
( X || Y )

false false true false false

false true true false true

true false false false true

true true false true true

Truth tables show the result of combining any two 
boolean expressions using the AND operator and the OR
operator (or the NOT operator).
You should memorize/learn these values.



Putting it Together:
ComplexConditional.java



Operator Order of Precedence in Java

Associativity tells the direction of execution of operators



Testing with Boolean  
Operations

Uses of && and || usually mean  
more tests are appropriate



Testing with Boolean  
Operations

Uses of && and || usually mean  
more tests are appropriate

if (x == 1 || x == 5) {  
return 7;

> 7 && x <= 20) {} else if (x  
return 8;

} else {  
return 55;

}



Testing with Boolean  
Operations

> 7 && x <= 20) {} else if (x  
return 8;

} else {  
return 55;

}

Uses of && and || usually mean  
more tests are appropriate

Test: x = 1
if (x == 1 || x == 5) {  

return 7;



Testing with Boolean  
Operations

> 7 && x <= 20) {} else if (x  
return 8;

} else {  
return 55;

}

Uses of && and || usually mean  
more tests are appropriate

Test: x = 1 Test: x = 5  
if (x == 1 || x == 5) {
return 7;



Testing with Boolean  
Operations

Uses of && and || usually mean  
more tests are appropriate

if
Test: x  
(x ==

=
1
1
||

Test: x =  
x == 5)

5
{

return 7; Test: x = 8
} else if (x > 7 && x <= 20) {
return 8;

} else {
return 55;

}



Testing with Boolean  
Operations

Uses of && and || usually mean  
more tests are appropriate

if
Test: x  
(x ==

=
1
1
||

Test: x =  
x == 5)

5
{

return 7; Test: x = 8
} else if (x > 7 && x <= 20) {  

return 8;
} else {
return 55;Test: x = 21

}



Putting it Together:
ComplexConditionalTest.java


